當前位置: 首頁 JCRQ1 期刊介紹(非官網)
    Fractals-complex Geometry Patterns And Scaling In Nature And Society

    Fractals-complex Geometry Patterns And Scaling In Nature And SocietySCIE

    國際簡稱:FRACTALS  參考譯名:自然與社會中的分形復雜幾何模式和尺度

    • 中科院分區

      3區

    • CiteScore分區

      Q1

    • JCR分區

      Q1

    基本信息:
    ISSN:0218-348X
    E-ISSN:1793-6543
    是否OA:未開放
    是否預警:否
    TOP期刊:否
    出版信息:
    出版地區:SINGAPORE
    出版商:World Scientific Publishing Co. Pte Ltd
    出版語言:English
    出版周期:Quarterly
    出版年份:1993
    研究方向:數學-數學跨學科應用
    評價信息:
    影響因子:3.3
    H-index:36
    CiteScore指數:7.4
    SJR指數:0.673
    SNIP指數:0.913
    發文數據:
    Gold OA文章占比:39.15%
    研究類文章占比:99.69%
    年發文量:327
    自引率:0.2340...
    開源占比:0.388
    出版撤稿占比:0
    出版國人文章占比:0.48
    OA被引用占比:0.1324...
    英文簡介 期刊介紹 CiteScore數據 中科院SCI分區 JCR分區 發文數據 常見問題

    英文簡介Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊介紹

    The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.

    Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.

    The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

    期刊簡介Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊介紹

    《Fractals-complex Geometry Patterns And Scaling In Nature And Society》自1993出版以來,是一本數學優秀雜志。致力于發表原創科學研究結果,并為數學各個領域的原創研究提供一個展示平臺,以促進數學領域的的進步。該刊鼓勵先進的、清晰的闡述,從廣泛的視角提供當前感興趣的研究主題的新見解,或審查多年來某個重要領域的所有重要發展。該期刊特色在于及時報道數學領域的最新進展和新發現新突破等。該刊近一年未被列入預警期刊名單,目前已被權威數據庫SCIE收錄,得到了廣泛的認可。

    該期刊投稿重要關注點:

    Cite Score數據(2024年最新版)Fractals-complex Geometry Patterns And Scaling In Nature And Society Cite Score數據

    • CiteScore:7.4
    • SJR:0.673
    • SNIP:0.913
    學科類別 分區 排名 百分位
    大類:Mathematics 小類:Geometry and Topology Q1 2 / 106

    98%

    大類:Mathematics 小類:Applied Mathematics Q1 39 / 635

    93%

    大類:Mathematics 小類:Modeling and Simulation Q1 29 / 324

    91%

    CiteScore 是由Elsevier(愛思唯爾)推出的另一種評價期刊影響力的文獻計量指標。反映出一家期刊近期發表論文的年篇均引用次數。CiteScore以Scopus數據庫中收集的引文為基礎,針對的是前四年發表的論文的引文。CiteScore的意義在于,它可以為學術界提供一種新的、更全面、更客觀地評價期刊影響力的方法,而不僅僅是通過影響因子(IF)這一單一指標來評價。

    歷年Cite Score趨勢圖

    中科院SCI分區Fractals-complex Geometry Patterns And Scaling In Nature And Society 中科院分區

    中科院 2023年12月升級版 綜述期刊:否 Top期刊:否
    大類學科 分區 小類學科 分區
    數學 3區 MULTIDISCIPLINARY SCIENCES 綜合性期刊 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數學跨學科應用 2區 3區

    中科院分區表 是以客觀數據為基礎,運用科學計量學方法對國際、國內學術期刊依據影響力進行等級劃分的期刊評價標準。它為我國科研、教育機構的管理人員、科研工作者提供了一份評價國際學術期刊影響力的參考數據,得到了全國各地高校、科研機構的廣泛認可。

    中科院分區表 將所有期刊按照一定指標劃分為1區、2區、3區、4區四個層次,類似于“優、良、及格”等。最開始,這個分區只是為了方便圖書管理及圖書情報領域的研究和期刊評估。之后中科院分區逐步發展成為了一種評價學術期刊質量的重要工具。

    歷年中科院分區趨勢圖

    JCR分區Fractals-complex Geometry Patterns And Scaling In Nature And Society JCR分區

    2023-2024 年最新版
    按JIF指標學科分區 收錄子集 分區 排名 百分位
    學科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 19 / 135

    86.3%

    學科:MULTIDISCIPLINARY SCIENCES SCIE Q1 29 / 134

    78.7%

    按JCI指標學科分區 收錄子集 分區 排名 百分位
    學科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 7 / 135

    95.19%

    學科:MULTIDISCIPLINARY SCIENCES SCIE Q1 18 / 135

    87.04%

    JCR分區的優勢在于它可以幫助讀者對學術文獻質量進行評估。不同學科的文章引用量可能存在較大的差異,此時單獨依靠影響因子(IF)評價期刊的質量可能是存在一定問題的。因此,JCR將期刊按照學科門類和影響因子分為不同的分區,這樣讀者可以根據自己的研究領域和需求選擇合適的期刊。

    歷年影響因子趨勢圖

    發文數據

    2023-2024 年國家/地區發文量統計
    • 國家/地區數量
    • CHINA MAINLAND317
    • USA38
    • Malaysia36
    • Pakistan26
    • Mexico22
    • Saudi Arabia22
    • Iran19
    • Taiwan19
    • India17
    • Turkey15

    本刊中國學者近年發表論文

    • 1、A NOVEL COLLECTIVE ALGORITHM USING CUBIC UNIFORM SPLINE AND FINITE DIFFERENCE APPROACHES TO SOLVING FRACTIONAL DIFFUSION SINGULAR WAVE MODEL THROUGH DAMPING-REACTION FORCES

      Author: Yao, Shao-Wen; Arqub, Omar Abu; Tayebi, Soumia; Osman, M. S.; Mahmoud, W.; Inc, Mustafa; Alsulami, Hamed

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400698

    • 2、STUDY OF INTEGER AND FRACTIONAL ORDER COVID-19 MATHEMATICAL MODEL

      Author: Ouncharoen, Rujira; Shah, Kamal; Ud Din, Rahim; Abdeljawad, Thabet; Ahmadian, Ali; Salahshour, Soheil; Sitthiwirattham, Thanin

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400467

    • 3、DYNAMICS IN A FRACTIONAL ORDER PREDATOR-PREY MODEL INVOLVING MICHAELIS-MENTEN-TYPE FUNCTIONAL RESPONSE AND BOTH UNEQUAL DELAYS

      Author: Li, Peiluan; Gao, Rong; Xu, Changjin; Lu, Yuejing; Shang, Youlin

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400704

    • 4、NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN-GORDON EQUATION WITH beta-FRACTIONAL DERIVATIVE

      Author: Wang, Kangle

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X23500032

    • 5、A NEW FRACTAL TRANSFORM FOR THE APPROXIMATE SOLUTION OF DRINFELD-SOKOLOV-WILSON MODEL WITH FRACTAL DERIVATIVES

      Author: Liu, Fenglian; Yang, Lei; Nadeem, Muhammad

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X2350007X

    • 6、RESEARCH ON NONLINEAR VARIATION OF ELASTIC WAVE VELOCITY DISPERSION CHARACTERISTIC IN LIMESTONE DYNAMIC FRACTURE PROCESS

      Author: Zhang, Zhibo; Wang, Enyuan; Zhang, Hongtu; Bai, Zhiming; Zhang, Yinghua; Chen, Xu

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X23500081

    • 7、A NOVEL FRACTAL MODEL FOR SPONTANEOUS IMBIBITION IN DAMAGED TREE-LIKE BRANCHING NETWORKS

      Author: Wang, Peilong; Xiao, Boqi; Gao, Jun; Zhu, Huaizhi; Liu, Mingxing; Long, Gongbo; Li, Peichao

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X2350010X

    • 8、MEYER WAVELET NEURAL NETWORKS PROCEDURES TO INVESTIGATE THE NUMERICAL PERFORMANCES OF THE COMPUTER VIRUS SPREAD WITH KILL SIGNALS

      Author: Sabir, Zulqurnain; Baleanu, Dumitru; Raja, Muhammad Asif Zahoor; Alshomrani, Ali S. S.; Hincal, Evren

      Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 2, pp. -. DOI: 10.1142/S0218348X2340025X

    投稿常見問題

    通訊方式:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224。

    主站蜘蛛池模板: 国产成人精品一区二三区熟女 | 国偷自产视频一区二区久| 国产精品一区二区久久沈樵| 国产精品 视频一区 二区三区| 97久久精品无码一区二区天美| 国产精品99无码一区二区| 久久中文字幕无码一区二区| 国产免费一区二区三区不卡| 鲁大师成人一区二区三区| 亚洲AV无码一区二区一二区| 精品国产aⅴ无码一区二区| 一区二区三区无码视频免费福利 | 在线日产精品一区| 消息称老熟妇乱视频一区二区| 韩国福利一区二区三区高清视频| 国产在线精品观看一区| 国产一区二区三区免费在线观看| 日本一区二区三区不卡视频| 国产精品亚洲一区二区麻豆 | 精品中文字幕一区二区三区四区 | 久久亚洲国产精品一区二区| 久久无码人妻精品一区二区三区| 国产成人精品无码一区二区老年人| 亚洲av日韩综合一区久热| 国产对白精品刺激一区二区| 国产乱人伦精品一区二区 | 秋霞日韩一区二区三区在线观看| 国产高清一区二区三区| 亚洲AV成人精品日韩一区| 亚洲一区二区三区乱码在线欧洲| 国产精品自拍一区| 人妻精品无码一区二区三区 | 色综合久久一区二区三区| 毛片无码一区二区三区a片视频| 中文字幕一区二区三区人妻少妇| 色欲AV蜜桃一区二区三| 黑人一区二区三区中文字幕| 插我一区二区在线观看| 亚洲福利视频一区| 欧亚精品一区三区免费| 人妻内射一区二区在线视频|